中文版|ENGLISH

钨合金百科

以钨为基加入其他元素组成的合金。在金属中,钨的熔点最高,高温强度和抗蠕变性能以及导热、导电和电子发射性能都好,比重大,除大量用于制造硬质合金和作合金添加剂外,钨及其合金广泛用于电子、电光源工业,也在航天、铸造、武器等部门中用于制作火箭喷管、压铸模具、穿甲弹芯、触点、发热体和隔热屏等。
钨最早用于制作白炽灯丝。1909年美国库利吉(W.D.Coolidge)采用钨粉压制、重熔、旋锻、拉丝工艺制成钨丝,从此钨丝生产得到迅速发展。1913年兰米尔(I.Langmuir)和罗杰斯 (W.Rogers)发现钨钍丝(又称钍钨丝)发射电子性能优于纯钨丝后,开始使用钨钍丝,至今仍然广泛使用。1922年研制出具有优良的抗下垂性能的钨丝(称为掺杂钨丝或不下垂钨丝),这是钨丝研究中的重大进展。不下垂钨丝是广泛使用的优异灯丝和阴极材料。50~60年代,对钨基合金进行了广泛的探索研究,希望发展能在1930~2760℃工作的钨合金,以供制作航天工业使用的耐高温部件。其中以钨铼系合金的研究较多。对钨的熔炼和加工成形技术也开展了研究,采用自耗电弧和电子束熔炼获得钨锭,并经挤压和塑性加工制成某些制品;但熔炼铸锭的晶粒粗大,塑性差,加工困难,成材率低,因而熔炼-塑性加工工艺未能成为主要生产手段。除化学气相沉积 (CVD法)和等离子喷涂能生产极少的产品外,粉末冶金仍是制造钨制品的主要手段。
  中国在20世纪50年代已能生产钨丝材。60年代对钨的熔炼、粉末冶金和加工工艺开展了研究,现已能生产板材、片材、箔材、棒材、管材、丝材和其他异型件。
  钨材使用温度高,单纯采用固溶强化方法对提高钨的高温强度效果不大。但在固溶强化的基础上再进行弥散(或沉淀)强化,可大大提高高温强度,以ThO2和沉淀的HfC弥散质点的强化效果最好。在 1900℃左右W-Hf-C系和W-ThO2系合金都有着高的高温强度和蠕变强度。在再结晶温度以下使用的钨合金,采取温加工硬化的方法,使其产生应变强化,是有效的强化途径。如细钨丝具有很高的抗拉强度,总加工变形率为99.999%、直径为0.015毫米的细钨丝,室温下抗拉强度可达438公斤力/毫米
  在难熔金属中,钨和钨合金的塑性-脆性转变温度最高。烧结和熔炼的多晶钨材的塑性-脆性转变温度约在150~450℃之间,造成加工和使用中的困难,而单晶钨则低于室温。钨材中的间隙杂质、微观结构和合金元素,以及塑性加工和表面状态,对钨材塑性-脆性转变温度都有很大影响。除铼可明显地降低钨材的塑性-脆性转变温度外,其他合金元素对降低塑性-脆性转变温度都收效甚微(见金属的强化)。
  钨的抗氧化性能差,氧化特点与钼类似,在1000℃以上便发生三氧化钨挥发,产生“灾害性”氧化。因此钨材高温使用时必须在真空或惰性气氛保护下,若在高温氧化气氛下使用,必须加防护涂层。
合金 按照用途不同,钨合金分为硬质合金、高比重合金、金属发汗材料、触头材料、电子和电光源材料。
  掺杂钨丝是在钨粉中添加 1%左右的硅、铝和钾的氧化物,在垂熔(自阻烧结)过程中,添加剂氧化钾挥发,在材料内部形成气孔,气孔经加工后沿轴向拉长;退火后,拉长气孔形成弥散的平行于丝轴的气泡行,这种弥散的气泡俗称为钾泡。钾泡阻碍钨晶粒的横向长大,提高钨的高温抗下垂性能,还可改善再结晶后的室温塑性,有利于绕丝和运输贮存。中国掺杂钨丝依高温蠕变值有WAl1、WAl2、WAl3三种牌号。
  在W-ThO2系合金中,由于添加适量的热稳定性好的弥散的ThO2质点,不仅可以降低电子逸出功,还可抑制钨晶粒长大,使材料具有很高的再结晶温度、优异的高温强度和抗蠕变性能。钨钍合金不仅是广泛使用的热电子发射材料,而且是优异的电极材料。
  钨铼合金中,铼的添加,不仅能提高材料强度,提高合金的再结晶温度约200~400℃,使二次再结晶后塑性好、晶粒长大缓慢,而且可以显著降低塑性-脆性转变温度。添加的铼如超过30%,就会损害合金的加工性能。钨铼合金还具有较高的热电势,在2200℃下,其热电势与温度成直线关系。钨铼热电偶测量温度可高达3000℃,是优异的高温热电偶材料。
  加工 钨的熔点高、硬而脆,加工困难,但只要有合理的工艺,钨可经粉末冶金制坯、挤压、锻造、轧制、旋压和拉拔等加工成材。随着钨的塑性加工程度的提高,其组织、抗拉强度和塑性-脆性转变温度大为改善
 


感动 同情 无聊 愤怒 搞笑 难过 高兴 路过
【字体: 】【打印文章

相关文章

    没有相关内容

Tel: 0086 21 52708408-12 Fax: 0086 21 52703793 Mobile: 0086 13918113803 Email: zhaoly7410@163.com

百度网站地图·RSS·WAP·sitemap  |  友情链接:放射防护  |  钨合金  |  吉尼斯世界纪录官网  |  吉尼斯纪录官网  |  吉尼斯官网  |  吉尼斯世界纪录官方网站  |  放射防护、钨合金博客  |铅玻璃  |铅板  |吉尼斯纪录官方网站  |吉尼斯官方网站  |